
Semidefinite approximation for

Gaussian maximum likelihood

function

Chi Bach Pham

Supervisor: Dr James Saunderson

Final Report submitted for ECE4095 Project B at

Monash University in 2021

Department of Electrical and Computer System Engineering

Significant contributions

Formulate multiple ways to approximate scalar function f(x) = ln(x) + x−1

that preserve its convexity.

Using the semi-definite approximation of f(x) to minimize the Gaussian

likelihood function

Numerical experimentation on estimation parameters to determine the trade-

off for each of these parameters

Encase all of the above into an user-friendly python package and release for

public use.

i

ii

Executive Summary

This report outlines the process of solving the Gaussian maximum likelihood

estimation problem using an off-the-shelf convex optimization solver. To do so,

we must devise a semi-definite programming approximation of the likelihood func-

tion. Several ways of approximating the likelihood function were devised during

the project and the result was a combination of two of these approaches. Then

numerical experimentation was done to balance the estimation parameters. The

outcome of this project is a parser that encapsulated all these complex approx-

imation processes into a user-friendly python package for use concurrently with

CVXPY, a python-based solver.

iii

Abstract

This project aims to develop a semi-definite approximation for the likelihood

function of multivariate Gaussian distribution. Previous studies on this topic use

specialized methods that are hard to replicate for people without some background

in the field. We aim to create a good approximation of the likelihood function so

that the Gaussian maximum likelihood estimation problem can be solved by a

conventional convex optimization solver. By exploiting properties of the likeli-

hood function we create a parser that can approximate it using many segments

of functions that are semi-definite representable, which enables a standard solver

like CVXPY to solve. The by-product of creating such representation is that extra

convex constraints can be added to the covariance of the Gaussian model with

ease.

iv

Contents

Significant contributions i

Poster ii

Executive Summary iii

Abstract iv

List of Figures vii

Abbreviations viii

1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 3

1.2.1 Finding the covariance . 3

1.2.2 Solving the MLE . 3

1.2.3 Adding linear constraints . 4

1.2.4 Semi-definite programming 4

2 Mathematical Background 6

2.1 Simplifying the objective function 6

2.2 The connection to f(x) = ln(x) + x−1 7

3 Detailed Discussion 10

3.1 Linear segments approximation . 10

3.1.1 Adaptive scheme for choosing way-points 12

3.2 Cubic segments approximation . 14

3.3 Alternate linear segment approximation 16

3.4 Final approximation . 18

3.5 Relative Error . 20

4 Overview 22

4.1 Block diagram . 23

4.1.1 Input . 23

4.1.2 Parser . 23

v

Contents vi

4.1.3 Solver . 24

4.1.4 Output . 24

4.2 Usage example . 24

4.2.1 Simplest example . 24

4.2.2 Source covariance example 25

5 Experiments 27

5.1 Estimation Parameter Experiment 27

5.1.1 Delta . 27

5.1.2 Epsilon . 28

5.1.3 Mu . 29

5.1.4 Experiment Conclusion . 29

5.2 Correlation matrices . 30

5.2.1 Experiment setup . 30

5.2.2 Result . 31

5.3 Brownian Tree Motion Model . 32

5.3.1 Experiment setup . 32

5.3.2 Result . 33

6 Conclusion 35

6.1 Limitation . 35

6.2 Future Work . 36

References 37

List of Figures

1.1 Hierarchy of convex optimization problems 5

3.1 The epigraph combination of 2 linear segments is the intersection
of their epigraph . 11

3.2 Linear segments with evenly spaced way-points 12

3.3 Linear segments with adaptive way-points 13

3.4 Convex hulls of the graphs of cubic polynomials on an interval.[1] . 14

3.5 The epigraph combination of 2 cubic segments is the union of their
epigraph . 15

3.6 The epigraph combination of 2 alternate linear segments is the
union of their epigraph . 18

3.7 Comparison between segments type with different δ an ε 18

3.8 Relative error versus Absolute error when δ = 7×10−4, ε = 5×10−4

and µ = 2× 10−2 . 21

4.1 Block diagram of the parser . 22

5.1 Solver time and error figure with different δ and ε values on a 6 by
6 matrix . 28

5.2 Solver time and error figure with different ε values on a 6 by 6 matrix 28

5.3 Solver time and error figure with different µ values on a 6 by 6 matrix 29

5.4 Solver performance versus sample covariance performance 31

5.5 Proposed network tree structure 33

5.6 The solver ran with a full dataset 33

5.7 Solver performance versus sample covariance performance 34

5.8 The subset tree structure(black) is laid over the full dataset tree
structure(red) . 34

vii

Abbreviations

PDF Probability Density Function

MLE Maximum Likelihood Estimtion

MLF Maximum Likelihood Function

SDP Semi-Definite Programming

PSD Positive Semi-Definite

viii

Chapter 1

Introduction

1.1 Background

In statistics, the Gaussian distribution is arguably the most important prob-

ability distribution, because it fits many natural phenomena and is widely used to

represent random variables with unknown distribution [2]. It is fully characterized

by its mean µ and standard deviation σ and is represented by the PDF

p(x) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 . (1.1)

When generalized into higher dimensions, the multivariate Gaussian distribu-

tion has the form

p(X) = (2π)−
d
2 det(Σ)−

1
2 e−

1
2

(X−µ)TΣ−1(X−µ) (1.2)

where Σ is a positive-definite covariance matrix, X is a vector of random variables

and µ is the mean of X In this project, we are more interested in the multivariate

version and fitting Σ from the samples of X. As such µ is assumed to be 0, and

so the PDF simplifies to

p(X) = (2π)−
d
2 det(Σ)−

1
2 e−

1
2
XTΣ−1X . (1.3)

1

Introduction 2

The PDF gives us the relative probability that a value is observed given the

covariance. It is relative due to there being infinite possible value for X but it

can still infer how much more likely that we observed the data point at this point

compare to some other point.

A central problem in statistics is, given a data set {X1, X2, . . . , Xn}, what

would be the most probable value for Σ. As stated earlier, the value of the PDF

would be higher if the value of X is more probable. So by making Σ into the

variable, we can search for the Σ that maximize p, given X. This problem is

called maximum likelihood estimation(MLE). Given samples {X1, X2, . . . , Xn} of

X, the likelihood function is

L(Σ) =
n∏
i=1

p(Xi) =
1

(2π)
nd
2 det(Σ)

nd
2

n∏
i=1

e−
1
2
XT
i Σ−1Xi . (1.4)

As we are dealing with exponential and product, as well as it is more desir-

able to work with a minimization problem, we will use the negative log-likelihood

function in this project

L(Σ) =
n∑
i=1

−ln(p(Xi)) =
nd

2
ln(2π) +

n

2
ln(det(Σ)) +

1

2

n∑
i=1

XT
i Σ−1Xi. (1.5)

Very often, we would like to add convex constraints to the covariance, such as

ensuring the diagonal entries are 1. This gives rise to the covariance-constrained

maximum likelihood estimation problem, which is the focus of this report. The

problem of maximum likelihood estimation is, therefore minimize L(Σ) subjected

to Σ positive definite. The representation that we need to create in order to be

suitable for a SDP solver should have the form

minimize
m∑
i=1

cixi (1.6)

subject to X =
m∑
i=1

Fixi − F0

X � 0.

Introduction 3

Which basically said that we want to minimize a linear function subject to

the constraints that a combination of matrices is positive semi-definite.

1.2 Literature Review

1.2.1 Finding the covariance

Solving the MLE is not the only way we can fit the covariance. The more

simple approach on finding the data generating covariance matrix is the simple

sample covariance where

Sn =
1

n

n∑
i=1

XiX
T
i . (1.7)

Although simple and straightforward, it was noted early on that it can be a

biased and inefficient estimator if there is not a substantial amount of data[3]. And

the process of adding the constraints might be different for each type of constraint.

Over the year, many works has been done to produce a better estimator and many

of those focus on solving the MLE which we take after in this project.

1.2.2 Solving the MLE

It is noted in many previous pieces of research that solving the MLE on the

inverse covariance would result in a concave function, which leads to a convex

optimization problem [4], while solving it on the covariance matrix would not

result in a convex problem[2], and would result in a multimodal problem. However,

under some condition, namely having a large sample-over-dimension ratio would

still result in a convex optimization problem[4].

In many of these research, conventional off-the-shelf convex optimization

solvers are not used. But iterative processes like the Newton-Raphson method

or gradient descent method are used instead. Or using non-linear algebra in case

the multimodal problem is of concern.

Introduction 4

Using off-the-shelf solvers should be more accessible for many people. For

that reason, CVXPY was chosen for this project as it is python based, which is a

popular and easy to pick up language. While also provide us the ability to add

convex constraints more easily.

1.2.3 Adding linear constraints

There are numerous researches where adding linear constraints on the covari-

ance would be desirable[5, 6]. It is used to study repeated time series[7], or to

study phylogenetic[8]. Some examples for these constraints are sparse matrices

where only a few entries are non-zero, correlation matrices where the diagonal is

1, or the more prominent examples being Brownian motion tree models.

If we try to solve it with the inverse covariance, adding the constraint would

add complications as we are adding constraints on the inverse of our objective.

Adding the constraints on the covariance would make more sense, but as discussed

earlier is usually multimodal and not a convex optimization problem.

However, if we solve it in a specific region where the covariance is between

0 and 2Sn where Sn is the sample covariance, it would be a strictly convex op-

timization problem, with a high probability to contain the true data-generating

covariance matrix[4]. This would be the direction this project is headed at as it is

more suitable for an SDP solver.

1.2.4 Semi-definite programming

The restriction we put on the covariance (0 � Σ � 2Sn) means we need

solvers that can handle such positive semi-definite (PSD) constraints, which mean

we need to use at least an SDP solver. And there are not many available works if

we want to go higher on the hierarchy.

Introduction 5

Figure 1.1: Hierarchy of convex optimization problems

The idea of creating a process to approximate a convex or concave function

into semi-definite programming representation has exist before[9]. As it has the

promise of being more accessible as long as we can provide a reasonable approxi-

mation error figure.

The paper mention above uses integral representation, coupled with Gaussian

quadrature to approximate the matrix logarithm. However, using integral repre-

sentation did not seem to be a straightforward option for this project, but could

be another direction that we could take in the future. This will be discussed in

Chapter 6.2.

Chapter 2

Mathematical Background

In this section, we discuss the pre-existing mathematical background that

form the foundation for this project to be build upon. In 2.1 we discuss on sim-

plifying the objective function. And then in 2.2 we discuss on how the SDP

representation is related to the SDP representation of f(x) = ln(x) + x−1.

2.1 Simplifying the objective function

Equation 1.5 is the equation that we want to minimize but will not be the

objective function that we give the solver. As there are properties of it that

can be exploited. First we can use
∑
xTi Σ−1xi = tr(

∑
xTi Σ−1xi) as it is scalar

and tr(x) = x if x is scalar. Then we can use the multiplicative property of

the determinant det(AB) = det(A) det(B) and the cyclic property of the trace

6

Mathematical Background 7

tr(ABC) = tr(CAB) to expand the Equation 1.5

L(Σ) =
nd

2
ln(2π) +

n

2
ln(det(Σ)) +

1

2

n∑
i=1

xTi Σ−1xi

=
nd

2
ln(2π) +

n

2
ln(det(ΣS−1

n) det(Sn)) +
1

2
tr(Σ−1

n∑
i=1

xTi xi)

=
nd

2
ln(2π) +

n

2
ln(det(ΣS−1

n))+

n

2
ln(det(Sn)) +

n

2
tr(Σ−1Sn). (2.1)

In Equation 2.1, outside from the two constant terms, the variable in the oher

two are inverse of each other and hence we can use substitution, X = ΣS−1
n . And

the function that we would try to minimize at this point is

Min
nd

2
ln(2π) +

n

2
ln(det(ΣS−1

n)) +
n

2
ln(det(Sn)) +

n

2
tr(Σ−1Sn)

⇔Min ln(det(ΣS−1
n)) + tr(Σ−1Sn)

⇔Min ln(det(X)) + tr(X−1). (2.2)

2.2 The connection to f (x) = ln(x) + x−1

The value of the Equation 2.2 is actually only dependant on the eigenvalue of

X. Since X is a symmetric matrix and we can write it as X = UΛUT where Λ is

diagonal matirx with Λi,i = λi, and U is a orthagonal and so satisfy UTU = UUT =

I. Using the cyclic property of trace and the multiplicative of the determinant we

see that

=⇒

tr(X−1) = tr(U−TΛ−1U−1) = tr(Λ−1U−TU−1) = tr(Λ−1) =
∑

i λ
−1
i

det(X) = det(UΛUT) = det(U) det(Λ) det(UT) = det(UUT) det(Λ) =
∏

i λi

=⇒ln(det(X) + tr(X−1) =
∑
i

(ln(λi) + λ−1
i).

Mathematical Background 8

We can see that the value of F (X) = ln(det(X) + tr(X−1) is only dependant

on its eigenvalues. Let f(x) = ln(x) + x−1. Define

f(X) = f(UΛUT) = U


f(λ1) 0 . . . 0

0 f(λ2) . . . 0
...

...
. . .

...

0 0 . . . f(λd)

U
T

and F (X) := tr(f(X))

Now, we can reorganize the optimisation problem

Min F (X) s.t 0 � X � 2I

⇔Min tr(f(X)) s.t 0 � X � 2I

⇔Min y s.t

tr(f(X)) ≤ y

0 � X � 2I.

(2.3)

f(x) still needs a semi-definite representation before it is ready for the SDP

solver. Fortunately, we can lift the SDR of a linear function using Theorem 3.1

from[10]. Note that the Kronecker product is replaced with multiplication in our

case because F terms are scalar,

f(x) ≤ y ⇔ ∃y ∈ Rn : F0 + xFX + yFY +
n∑
i=1

tiFi � 0

⇔tr(f(X)) ≤ y ⇔ ∃Y, T1. . . . , Tn ∈ Rn×n :

F0I +XFX + Y FY +
n∑
i=1

FiTi � 0

tr(Y) ≤ y (2.4)

where I is the identity matrix of side d × d, and F0, . . . , Fn, FX , FT are what we

need to determine by approximating f(x) = ln(x) + x−1, this will be discuss

in Chapter 3. To summarize, the final SDP problem for the MLE of Gassian

Mathematical Background 9

distribution is:

Min t s.t


F0 +XFX + Y Fy +

n∑
i=1

TiFi � 0

tr(Y) ≤ y

0 � X � 2I

(2.5)

Chapter 3

Detailed Discussion

A reason for why we need an SDP approximation of f(x) is that it contains

the logarithm which belongs to a class of function called transcendental functions,

while SDP usually work within the boundary of algebraic functions. Hence the

need for approximation. Within this boundary of algebraic functions, there are a

lot of ways that we can approximate the logarithm or f(x), we will start with the

simplest approach which use a lot of linear segments.

Another thing that the approximation differ from a faithful representation is

the boundary, as f(x) goes to inf at x = 0, we introduce ε, which defined the left

boundary for x, so instead of 0 ≤ x ≤ 2, we have ε ≤ x ≤ 2.

3.1 Linear segments approximation

The form for the epigraph of a linear segment is

(x, y) :

 ax+ b− y ≥ 0

0 ≤ x ≤ 2.

(3.1)

10

Detailed Discussion 11

Figure 3.1: The epigraph combination of 2 linear segments is the intersection
of their epigraph

A line segment naturally do not approximate a curve well, for that reason, we

use many short segments to imitate the curvature of f(x). And a nice thing about

linear segment is that the combination of the their epigraph is the same as the

intersection of their epigraph. Which mean they can be put together right away

without any other constraints. And hence the epigraph of f(x) in the region

(x, y) :



a1x+ b1 − y ≥ 0

a2x+ b2 − y ≥ 0

...

anx+ bn − y ≥ 0

0 ≤ X ≤ 2.

(3.2)

Equation 3.1 can be lift off in to a PSD constraints and in turn, Equation 3.2

can also be lift off the same way, providing a complete epigraph for Equation 2.5’s

Detailed Discussion 12

first and last constraint

(X, Y) :



a1X + b1I − Y � 0

a2X + b2I − Y � 0

...

anX + bnI − Y � 0

0 � X � 2I.

(3.3)

The problem now is to find appropriate line segments to produce the most

accurate representation while using the least amount of segment. The segments

would connect two points that sit on f(x), i.e connecting (x1, f(x1)) and (x2, f(x2)).

Lets call these x1, x2, ...xn way-points. The question now would be how to space

these way-points out for the best result. Spacing them out evenly would not pro-

duce good results as the function is very steep at the left side, which means it

needs high resolution on these part while the right side is quite flat and do not

require high resolution. For this reason, an adaptive scheme was implemented and

will be discussed in the next subsection.

Figure 3.2: Linear segments with evenly spaced way-points

3.1.1 Adaptive scheme for choosing way-points

As we want to adjust the resolution in according to the curvature of f(x),

we introduced a new estimation parameter δ, define as the maximum absolute

difference between the line through (xi, f(xi)) and (xj, f(xj)) in between xi and

xj for consecutive i, j.

Detailed Discussion 13

The adaptive scheme work by finding the largest distance between two con-

secutive way-points so that the error is less than a certain threshold. This can be

done using binary search, the process can be summarized like so:

1: Start at x1 = 2

2: Conduct binary search in the region between ε and xcurrent, to find the

smallest value of xnext so that the error of the segment connecting them is

less than δ.

3: Advance xcurrent to xnext and repeat step 2 until xcurrent is less than ε

4: Return the way-points x1 to xn

This process brings two benefits. One is that we can make effective uses of

the segment. Two is that it is dependant on a reasonable criterion which is δ. So

any adjustment made by the user would be much more intuitive.

Figure 3.3: Linear segments with adaptive way-points

The linear segments method provide a good approximation of f(x), but as

f(x) is very steep near 0, the amount of segment increase greatly once we increase

the precision(i.e decrease δ) or expand the boundary(i.e decrease ε). The next

logical step would be using segments that possess an inherent curvature. The next

section will discuss the next step up from linear segments, which use cubic instead

of a line.

Detailed Discussion 14

3.2 Cubic segments approximation

A problem with cubic is that it is not strictly convex, and required a convex

hull. The description of the convex hull is provided in [1], which stated that for a

cubic p(x) with x ∈ [a, b] the convex hull of the cubic is

Figure 3.4: Convex hulls of the graphs of cubic polynomials on an interval.[1]

x1 = a, x2 = a+
1

4
(b− a), x3 = a+

3

4
(b− a), x4 = b.3α2 0

0 12α4

+ α3

1 2

2 4

 � 0,

3α3 0

0 12α1

+ α2

1 2

2 4

 � 0,

4∑
i=1

αi = 1,
4∑
i=1

αixi = x,
4∑
i=1

αif(xi) = y. (3.4)

Where xi are the interpolation points of the polynomial. And x, y, α1, α2, α,α4 are

scalar value.

Detailed Discussion 15

Figure 3.5: The epigraph combination of 2 cubic segments is the union of
their epigraph

Two problem arises for the above representation. Firstly, we want all the

points above the polynomial as well where the above expression does not contain.

This can be resolve easily by making the expression for y become an inequality,∑
αif(xi) ≤ y. Secondly, the combination of these epigraphs is a union instead

of an intersection like in the linear segment case. And the union of these convex

sets does not guarantee convexity. For this reason, we need to use the convex hull

of the union, the formula for such set is [11]

conv(S) =
{ n∑
i=1

λisi

∣∣∣n ∈ N ∧
n∑
i=1

λi = 1 ∧ ∀i ∈ {1, . . . , n} : λi ≥ 0 ∧ si ∈ S
}

(3.5)

where si is the set containing all the points of the epigraphs, and λ is the scal-

ing factor, serving a similar function to αi in Equation 3.4. So to complete the

representation for the cubic we first need to lift Equation 3.4 into a PSD con-

straint, then adjust the scaling factor λi and αi so that they add up to 1. The

Detailed Discussion 16

final representation is 3α2,i 0

0 12α4,i

+ α3,i

 I 2I

2I 4I

 � 0,

3α3,i 0

0 12α1

+ α2,i

1I 2I

2I 4I

 � 0,

4∑
j=1

αj,i = λi,

4∑
j=1

αj,ix̄j,i = Xi,

4∑
j=1

αj,if(x̄j,i) = Yi.

m∑
i=1

λi = I,

m∑
i=1

Xi = X,

m∑
i=1

Yi = Y.

where we have m cubics and x̄j,i is the jth interpolation point of the ith cubic. The

adaptive scheme described in previous Section 3.1.1 can also be used here.

Even though the curvature of the cubic helps reduce the amount of segment if

we increase precision. Disappointingly, the cost of the convex hull is much larger

than the linear segments, while not addressing the other problem. Which was f(x)

is very steep near x = 0, which means when reducing ε, it does not improve much

compare to the linear segments while being much more costly.

3.3 Alternate linear segment approximation

Near x = 0, f(x) was dominated by x−1 and if we want to stay with polyno-

mial, we would need one with high degree which could be even more costly than

the cubic. The reason for us to go with the approximation is only due to the log-

arithm as discuss in Chapter 3, and we can represent x−1 just fine. Which mean

we could have the segment as x−1 + ax+ b

x−1 + ax+ b ≤ y

Detailed Discussion 17

⇐⇒


x−1 ≤ y1 (3.6a)

ax+ b ≤ y2 (3.6b)

y1 + y2 ≤ y.

With this segment, a and b can be determine by using the adaptive approach

discuss in Section 3.1.1 but instead of calculating error between the line and f(x),

the error is between the line and ln(x). Then Equation 3.6b can be lift off into

a PSD constraint just like regular segments discuss in Section 3.1. To lift Equa-

tion 3.6a, we can utilize Sylvester’s criterion, which stated a matrix M is positive

semi-definite if its top-left 1-by-1, 2-by-2,..., n-by-n matrix have positive determi-

nant 1− xy1 ≥ 0

x ≥ 0

⇐⇒

x 1

1 y1

 � 0. (3.7)

So the representation of an alternate segment isX I

I Y1

 � 0

aX + bI − Y2 � 0

Y1 + Y2 � Y. (3.8)

Once again we are dealing with an union of sets instead of an intersection(

Figure 3.6). Which mean we need to make some adjustment to Equation 3.8

λiXi λi

λi λiY1i

 � 0

aλiXi + bλi − λiY2i � 0

λiY1i + λiY2i − λiYi � 0

n∑
i=1

λi = I,

n∑
i=1

λiXi = X,

n∑
i=1

λiYi = Y (3.9)

Detailed Discussion 18

Figure 3.6: The epigraph combination of 2 alternate linear segments is the
union of their epigraph

where we have n segments. The reason for multiplying all terms in the first three

equations with λi of Equation 3.9 is that had we not, λi and Xi would be two

separate variables bound by a multiplication constraint, and that is not allowed in

SDP. So by multiplying all single Xi terms with λi, we can treat λiXi as a single

variable and cancel the multiplication.

3.4 Final approximation

Figure 3.7: Comparison between segments type with different δ an ε

Detailed Discussion 19

So far, the most costly segment is cubic segments due to a large amount of

matrix inequality but it can have a low amount of segments. It is more and more

worthwhile to use when δ is lower and lower. The alternate linear segments are

a bit less costly, and the cost gets justify when ε is low. The linear segment

is extremely cheap compare to the supposed improved options. But if the user

requires low δ and ε, there could be 100 times more linear segment compare to the

other two.

So in general, we can stay with linear segments as long as δ and ε are forgiving.

But when ε is low, the alternate linear segment is an appealing choice. When δ

is low, the cubic is marginally better than the alternate linear segment but we

usually would not go too low on δ.

A thing about δ is, decreasing δ does not guarantee better results as there are

overhead errors due to the other factor like the data. And improving the accuracy

on our side would do nothing to those sort of errors. And so even though the

improved segments are better with low δ, it is unnecessary for many cases.

Most of the segments are situated near 0 and a thing we could do is combining

the property of the linear segment and the alternate linear segment. Here, let’s

introduced a new estimation parameter µ, defined as the boundary where we

switch from using the linear segment to the alternate linear segment. So basically,

we create a representation of f(x) in the segment between [ε, µ] using alternate

linear segment and a linear representation of f(x) in the segment between [µ, 2].

Then stitch them together using a convex hull of the union. This involved adding

scaling parameters like λ to the linear segment epigraph. The final optimization

Detailed Discussion 20

problem is

min t s.t



λiXi λi

λi λiY1i

 � 0

aalt,iλiXi + balt,iλi − λiY2i � 0 ∀i ∈ [1, n]

λiY1i + λiY2i − λiYi � 0
n∑
i=1

λi = λalt,

n∑
i=1

λiXi = Xalt,

n∑
i=1

λiYi = Yalt

alin,jXlinλlin + blin,jλlin − Ylinλlin � 0 ∀j ∈ [1,m]

λlin + λalt = I, Xlinλlin +Xalt = X, Ylinλlin + Yalt = Y

0 � X,Xalt, Xlin, Xi∀i � 2I

S
− 1

2
n XS

− 1
2

n = cov

tr(Y) ≤ t

where n is the number of alternate linear segments and m is the number of linear

segments. aalt,i, balt,i, alin,i and blin,i are generated from the adaptive scheme

depending on the estimation parameters. Sn is the sample covariance calculated

from the data. cov is the final result, the estimated covariance of the data. All

other are matrices of size d× d except t, which is a scalar value of F (X).

3.5 Relative Error

Throughout this chapter, we have been sticking to the same error function,

which was the maximum absolute difference between the target and the approxi-

mation. Since f(x) is very steep at 0, a larger error at this end would not have a

drastic change to the function. In this region the error even comes from the fact

that we need to stitch the epigraphs with convex hull and the error figure provided

by the user does not tell the true story. Another thing that was observed is that

Detailed Discussion 21

the result of the solver rarely goes into this region which justifies setting a more

lenient error figure at this side.

So we introduced an option to choose to switch to relative error instead.

Which is err(x)
f(x)

. So an error of 1 at f(x) = 1000 would result in the error figure of

10−3. This improves run time a lot because it reduces the amount of the segment

even more

Figure 3.8: Relative error versus Absolute error when δ = 7 × 10−4, ε =
5× 10−4 and µ = 2× 10−2

Chapter 4

Overview

This chapter discusses how everything we have discusses in the previous chap-

ter is put together into a user-friendly package that disguises all the complicated

math behind it. We will go through the block diagram in this chapter the same

way the data travel, from input through to the result.

The package is available online at:

https://github.com/pcbach/LinGaussCov

Figure 4.1: Block diagram of the parser

22

https://github.com/pcbach/LinGaussCov

Overview 23

4.1 Block diagram

4.1.1 Input

This section describes the input, where the user interacts with the package to

describe what they want to solve. There are four inputs that the user can provide

for the parser, two of which is optional:

Cov: This is the CVXPY matrix variable of size d×d, the value of this variable

will change at the end and is also the output of the solver.

Data: This is the data that is used to calculate the sample covariance (Sn)

and is an numpy array of size n× d

Estimation parameter: (Optional) This is the four parameters discuss in the

previous chapter: δ, ε, µ and error figure max or snr. The user can choose

not to specify this and a default value will be used.

Extra linear constraint: (Optional) This is any linear constraint that the

user wishes to put upon cov.

4.1.2 Parser

As previously stated in Equation 2.5, the epigraph discuss in Chapter 3 will

be constraints for the solver while the objective function is t where t = tr(Y).

First, the adaptive scheme in Section 3.1.1 is used to find all the coefficients for

the lines. Then the Equation 3.10 can just be implemented straightforwardly and

pack into a list of constraints.

Then any other linear constraints in the input can then also be added to the

constraint list.

Overview 24

4.1.3 Solver

The solver used here is MOSEK as it is probably the best option provided with

CVXPY. Even though it is shown as a separate block from the parser, the process of

interacting with the solver is also packaged inside. The user essentially does not

need to interact with the underlying mathematics content.

4.1.4 Output

The return value of the solver is the cov that is given by the user at first.

4.2 Usage example

4.2.1 Simplest example

Here we just solve the base function without any data, the result should be

an identity matrix. Code:

import numpy as np

import cvxpy

import ps

d = 6

cov = cvxpy.Variable ((d, d),PSD = True)

Problem = ps.LGC(cov , d, data = [])

ans = Problem.solve(solver = cvxpy.MOSEK)

print(ans)

print(Problem.time)

The Problem.time is actually the solver time and not real time. Output:

Overview 25

[[1. -0. 0. -0. -0. 0.]

[-0. 1. -0. 0. 0. 0.]

[0. -0. 1. -0. -0. 0.]

[-0. 0. -0. 1. 0. 0.]

[-0. 0. -0. 0. 1. -0.]

[0. 0. 0. 0. -0. 1.]]

0.765

4.2.2 Source covariance example

Here we generate data from a source covariance, and use that data to find the

covariance, the result should be similar to this source covariance. A constraint for

ones in the diagonal is added. Code:

import numpy as np

import cvxpy

import ps

d = 6

covariance = [

[1. ,0.08 ,-0.48 ,-0.04 ,-0.18 ,-0.32],

[0.08 , 1. , 0.02 ,-0.08 , 0.38 , 0.1],

[-0.48 , 0.02 , 1. ,-0.03 , 0.44 ,-0.1],

[-0.04 ,-0.08 ,-0.03 , 1. ,-0.27 ,-0.14],

[-0.18 ,0.38 , 0.44 ,-0.27 , 1. ,-0.2],

[-0.32 ,0.1 ,-0.1 ,-0.14 ,-0.2 , 1.]]

mean = np.zeros(d)

data = np.random.multivariate_normal(mean , covariance , 5000)

cov = cvxpy.Variable ((d, d),PSD = True)

Problem = ps.LGC(cov , d, data = data)

Problem.add_constraint([cov[i,i] == 1 for i in range(d)])

ans = Problem.solve(solver = cvxpy.MOSEK)

print(ans)

print(Problem.time)

Output:

Overview 26

[[1. 0.077 -0.48 -0.035 -0.186 -0.315]

[0.077 1. 0.016 -0.08 0.376 0.102]

[-0.48 0.016 1. -0.032 0.443 -0.105]

[-0.035 -0.08 -0.032 1. -0.273 -0.144]

[-0.186 0.376 0.443 -0.273 1. -0.2]

[-0.315 0.102 -0.105 -0.144 -0.2 1.]]

1.312

Chapter 5

Experiments

This chapter discusses the experiment conduct with the parser. From trying

out the best performing estimation parameters to fitting synthetic data as well as

real-world data.

5.1 Estimation Parameter Experiment

This section carries experiments on the estimation parameters to determine

a good default setting for the user.

5.1.1 Delta

The solving time is usually higher with tighter constraints, which is obvious,

the outlier is due to other processes also running on the computer at the same

time and could affect performance. But we can see that in this particular run,

the error kind of improved up until a point around 5 × 10−4 and flat out as δ is

decrease further. This holds for other runs as well, which is expected as there are

overhead errors as discussed before and we can only improve things on our end to

a certain degree.

27

Experiment 28

Figure 5.1: Solver time and error figure with different δ and ε values on a 6
by 6 matrix

From these observations, the default δ value is 5× 10−4.

5.1.2 Epsilon

Figure 5.2: Solver time and error figure with different ε values on a 6 by 6
matrix

Experiment 29

Changing ε actually would not have a large effect on the solver unless X is

close to 0. But having a tight ε also does not increase the solver time much, so we

set it to a reasonably small value for the default setting, which is at 1× 10−5

5.1.3 Mu

Figure 5.3: Solver time and error figure with different µ values on a 6 by 6
matrix

A rather interesting occurrence happens when µ is low, this is because at this

boundary, the linear segments just way too inadequate to approximate f(x) with

relative error. While setting a low µ value essentially forces the parser to use the

linear segments. If we set it to absolute error, there would be much more segments

(about 20 times at µ = 10−4 and around 70 times at µ = 10−5). So the linear

segments are unusable at this region and µ work the best around 10−2 and should

not be any lower than 10−3.

5.1.4 Experiment Conclusion

The default value that was decided after these experiment is δ = 5×10−4, ε =

ε and µ = 10−2.

Experiment 30

Another discovery made during this experiment is that the interface between

CVXPY and MOSEK seems to be inefficient and problem take a lot more time to set

up compare to the time it take to solve. Which is why having 20 to 70 more times

segments in the experiment with µ when using absolute error is so indesirable.

5.2 Correlation matrices

5.2.1 Experiment setup

As mentioned before, solving the MLE with the covariance matrix while using

an off-the-shelf solver bring the benefit of adding linear constraints on the covari-

ance matrix. A simple example of this is the correlation matrix where the diagonal

is 1.

To conduct this experiment, a correlation matrix is randomly generated. Then

data is then generated from this source covariance. A subset of this data is then

used to calculate the sample covariance and use as data for the solver. The solver

is solved with default estimation parameters and a constraint where the diago-

nal entries are all 1. Then the likelihood function value of these two answers is

calculated and compare.

The accuracy here is the value of the likelihood function when scored with

the data-generating covariance matrix.

Experiment 31

Figure 5.4: Solver performance versus sample covariance performance

5.2.2 Result

The result is non-decisive on which is more accurate, which is expected be-

cause the constraints is not too special and the sample covariance is usually a good

estimator.

Experiment 32

5.3 Brownian Tree Motion Model

5.3.1 Experiment setup

Another type of constraint that regularly appears in engineering problems is

the Brownian motion tree model constraint. Given a rooted tree T on a set of

node V = {1, . . . , r} and with p leaves, where p ≤ r, the corresponding Brownian

motion tree model consists of all covariance matrices of the form

Σv =
∑
i∈V

viede(i)e
T
de(i) (5.1)

Where ede(i) ∈ R is a 0/1-vector with entry 1 at position j if leaf j is a

descendant of node i and 0 otherwise. Here the parameter vi describe branch

length and the covariance between any two leaves i, j is the amount of shared

ancestry between these leaves[4].

traceA structure with such structure that comes to mind is the internet. If

you send data packets to 2 different websites, a variance on a shared path between

the two websites would affect both sides and the covariance between them should

be proportional to the length of this shared path.

To conduct this experiment, 8 universities around the world was chosen. We

purposely choose these websites as they seem to host their website on-site and not

through a third party which could behave differently. We pinged 8 websites at the

same time to collect the round trip time data for a long period to form a dataset

(1000 times each website throughout the day). Then we ran the solver without

the structure first and determine a reasonable tree structure from studying the

covariance matrix and determine the tree structure by hand. Then, we ran the

solver again, this time with only 15 data points but with a structure, and compare

that to the sample covariance.

Experiment 33

Figure 5.5: Proposed network tree structure

5.3.2 Result

Figure 5.6: The solver ran with a full dataset

Experiment 34

As discussed in previous experiment,

as the correlation matrix constraint

is not that complicated, the sample

covariance perform comparable to the

solver. However in this case, with a

more complicated structure, we should

expect a more significant difference in

performance. Which is very clearly

observed on the right.
Figure 5.7: Solver per-
formance versus sample

covariance performance

A nice thing that came as a byproduct is that if we overlaid the output the

subset’s tree structure over the full data’s tree structure we can kind of see which

path is behave abnormally for this particular subset of data.

Figure 5.8: The subset tree structure(black) is laid over the full dataset tree
structure(red)

Chapter 6

Conclusion

Solving the MLE is a very popular problem but is not always an easy task for

many people. While there are many situations where the sample covariance does

not provide adequate results. This project succeeded in creating a parser that

encapsulated a semi-definite approximation of the Gaussian likelihood function.

Which could help people solve the MLE with constraints on the covariance matrix

using an off-the-shelf solver with very short syntax with acceptable accuracy.

The parser is also proven to work with complicated constraints like a Brownian

Tree Model. Making adding constraints on the MLE problem easier than ever.

This could help solve many engineering problems where a structured covariance

matrix is involved.

There are still limitations and improvements that can be done on this project

and will be discussed in the following section.

6.1 Limitation

As we are dependant on the solver, we carry with us any drawback of the

solver.

35

Experiment 36

The parser can be quite slow at times. This usually happens when setting up

problems with lots of constraints. This could be due to the parser inefficiency or

the CVXPY-MOSEK interface inefficiency.

The problem created by the parser can be unsolvable at times for the solver.

Once again the cause of this is unknown, it could be the parser fault, or MOSEK

fault, nothing can be sure until we conduct further experiments.

6.2 Future Work

More experiments can be conducted to determine the problem stated in the

previous section. This can range from reviewing our code to delve deep into CVXPY

source code

As mentioned in an earlier chapter, the approach we take is not the only one,

there has been similar work on semi-definite approximation of other functions like

the logarithm[9]. Where they used integral approximation instead. This is quite

different from our approach. Since from another viewpoint, they are approximating

the function by stacking functions on top of each other, while we work from left

to right. A problem with our case is that when using an integral representation

on f(x) it turns into an integral of a rational function with degree 2, which seems

more complicated than the logarithm case.

We have also try another approach using the Taylor series where we break

f(x) up into many polynomials. This poses some promising property like how it

preserves the convexity but overall seems to be much more complicated than the

method we are using and requires more time to devise a reasonable solution.

Another thing regarding Python, eventhough it seems appealing to casual

user and beginners. In a more academic setting, a package in R might be more

appealing to professionals. And releasing a R package will be the next thing in

our list.

References

[1] P. P. G. Blekherman and R. Thomas, Semidefinite optimization and convex

algebraic geometry. Philadelphia: SIAM, 2012, ch. 3, p. 69.

[2] J. J. Warnes and B. D. Ripley, “Problems with likelihood estimation of co-

variance functions of spatial gaussian processes,” Biometrika, vol. 74, no. 3,

pp. 640–642, 9 1987.

[3] C. Stein, “Inadmissibility of the usual estimator for the mean of a multivari-

ate normal distribution,” in Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability. Berkeley, CA: University of Cali-

fornia Pres, 1956, p. 197–206.

[4] C. P.Zwiernik and D.Richards, “Maximum likelihood estimation for linear

gaussian covariance models,” Journal of the Royal Statistical Society: Series

B (Statistical Methodology), vol. 79, no. 4, pp. 1269–1292, 4 2016.

[5] M. Pourahmadi, “Covariance estimation: The glm and regularization per-

spectivess,” Statistical Science, vol. 26, no. 3, pp. 369–387, 2011.

[6] P. Z. B. Sturmfels, S. Timme, “Estimating linear covariance models with

numerical nonlinear algebra,” Algebraic Statistic, vol. 11, no. 1, pp. 31–52,

2020.

[7] T. W. Anderson, “Estimation of covariance matrices which are linear combi-

nations or whose inverses are linear combinations of given matrice,” in Essays

in Probability and Statistic. Chapel Hill, N.C: University of North Carolina

Pres, 1970, pp. 1–24.

37

Reference 38

[8] J. Felsenstein, “Maximum-likelihood estimation of evolutionary trees from

continuous characters,” American Journal of Human Genetics, vol. 25, p.

471–492, 2020.

[9] J. S. H. Fawzi and P. Parrilo, “Semidefinite approximations of the matrix

logarithm,” Foundations of Computational Mathematics, vol. 19, no. 2, pp.

259–296, 2018.

[10] G. Sagnol, “On the semidefinite representation of real functions applied to

symmetric matrices,” Linear Algebra and its Applications, vol. 439, no. 10,

pp. 2829–2843, 2013.

[11] M. H. B. Gartner and E. Welzl, “Convex hull,” Available at: https://www.

ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%203.pdf (2013-01-10), ac-

cessed: 2020-31-10.

https://www.ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%203.pdf
https://www.ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%203.pdf

	Significant contributions
	Poster
	Executive Summary
	Abstract
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Literature Review
	1.2.1 Finding the covariance
	1.2.2 Solving the MLE
	1.2.3 Adding linear constraints
	1.2.4 Semi-definite programming

	2 Mathematical Background
	2.1 Simplifying the objective function
	2.2 The connection to f(x) = ln(x) + 1/x

	3 Detailed Discussion
	3.1 Linear segments approximation
	3.1.1 Adaptive scheme for choosing way-points

	3.2 Cubic segments approximation
	3.3 Alternate linear segment approximation
	3.4 Final approximation
	3.5 Relative Error

	4 Overview
	4.1 Block diagram
	4.1.1 Input
	4.1.2 Parser
	4.1.3 Solver
	4.1.4 Output

	4.2 Usage example
	4.2.1 Simplest example
	4.2.2 Source covariance example

	5 Experiments
	5.1 Estimation Parameter Experiment
	5.1.1 Delta
	5.1.2 Epsilon
	5.1.3 Mu
	5.1.4 Experiment Conclusion

	5.2 Correlation matrices
	5.2.1 Experiment setup
	5.2.2 Result

	5.3 Brownian Tree Motion Model
	5.3.1 Experiment setup
	5.3.2 Result

	6 Conclusion
	6.1 Limitation
	6.2 Future Work

	References

